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Abstract. An operational probability distribution for number and phase is introduced and the
properties are investigated. This operational probability distribution is obtained by replacing
the displacement operator of position and momentum in operational phase-space probability
distribution with the displacement operator of number and phase. It is shown that the operational
number-phase probability distribution is represented by the convolution of two Wigner functions
for number and phase.

The phase-space distribution functions for a quantum state of a physical system are useful
tools for investigating the dynamical and statistical properties of a quantum mechanical
system [1-6]. These include the Glauber—-Sudarghdanction [7-9], the Wigner function

[10, 11] and the HusimiQ-function [12, 13] which are closely related to the operator
ordering in the mathematical description of a physical system. Except for the Husimi
Q-function, the phase-space distribution functions can take negative values due to the
non-commutativity or the uncertainty relation of position and momentum. Thus these
functions cannot be considered as the probability distributions in the phase space and they
are called the quasiprobability distributions. The quasiprobability distributions of position
and momentum in the phase space characterize the intrinsic properties of a quantum state
of a physical system.

By taking account of the external effects caused by measurement apparatus or by some
environmental system, the probability distribution of position and momentum can be defined
for a quantum mechanical system [14-19], which is called the operational phase-space
probability distribution. The operational phase-space probability distribution, denoted as
W(r, k), is given by

Wi(r, k) = Zi Tr[pD(r, k)6 D' (r, k)] (1)
JT
which is non-negative and normalized as
/ dr / dk W(r, k) = 1. 2)

In equation (1),0 is a statistical operator of the quantum state of the systenmsaisdalso

some statistical operator which is referred to as the quantum ruler [16, 17] or the reference
state [18, 19]. The Hilbert space on which these operators are defined is dendted hs
operatorD(r, k) induces the displacement in the phase space,

D(r, k) = explikx — r p)]
= explua’ — p*a 3)
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wherex and p are position and momentum operators @ndnda’ are annihilation and
creation operators and the complex parametés given byu = (r +ik)/+/2. In this letter,
operators are denoted as a symbol with a hat. When the reference state is the vacuum state,
we obtain the Husimp-function.

It is shown that the operational phase-space probability distribution is expressed as the
convolution of thes-ordered quasiprobability distribution and)-ordered quasiprobability
distribution [18]. In particular, we have

W(r,k)=/ dq/ dp P(g+r,p+k;0)Q(q, p;6)
=/ dq/ dp Qg +r,p+k;p)P(q, p;6)

=/ dq/ dpW(g+r, p+k p)W(q, p; 6) 4)

where P(q, p; p), Q(g, p; p) and W(q, p; p) are the Glauber—Sudarsham-function,

the Husimi Q-function and the Wigner function of the quantum stgte Therefore

the operational phase-space probability distribution is the smoothed quasiprobability
distribution. The smoothing effect is due to the finite accuracy or the sampling of the
measurement apparatus [16, 17]. The operational phase-space probability distribution
describes the properties of the physical system and the measurement apparatus while the
guasiprobability distribution does the properties of only the physical system. The marginal
probability distributions are obtained

Wir) = / AW k) = f dg £(q — ialpla) 5)

W(k)=/ drW(r, k) =/ dp gk — p){plplp) (6)

where|g) and |p) are the position and momentum eigenstates g = (¢|6|g) and

g(p) = (pla|p) represents are the filter functions of the measurement apparatus. The
properties of the operational phase-space probability distribution have been investigated in
detail [14-19]. It is shown that the operational phase-space probability distribution can
describe the realistic optical measurement [20, 21] and the simultaneous measurement of
position and momentum [22, 23]. Furthermore we remark that the operational phase-space
probability distributions are closely related to the stochastic or fuzzy-space formulation of
guantum mechanics [24, 25].

The operational phase-space probability distribution is a function of position and
momentum which are canonically conjugate to each other, and the properties have been
investigated in detail. Number and phase are also an important canonical pair in quantum
optical systems. Therefore the purpose of this letter is to introduce the operational
probability distribution for number and phase and to investigate the properties. To obtain the
operational number-phase probability distribution, let us rewrite the operational phase-space
probability distribution in another form [18]. We first introduce an auxiliary Hilbert space
H, and we define a statistical operatiyin this Hilbert space by

Ga= Y Ima)l(n|&|m)](nal ™

m=0 n=0

where|n) and |ny) are the Fock states in the Hilbert spad¢sand H,. We denote all of
the quantities in the auxiliary Hilbert spaéé, by adding the subscript ‘a’. The statistical
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operatoro, satisfies the relation@ng|dalna) = (r|o|m) and(xa|dalya) = {y|o|x). Using the
statistical operatof,, we can express the operational phase-space probability distribution
W(r, k) given by equation (1) in the following form [18]:

W(r, k) = (Y (r, k)| p ® Gal Y (r, k) (8)
where|y (r, k)) is a state vector in the tensor product Hilbert spac® H,,
1 o0 .
W)= = [ dalr+) @ lge. (©)

It is easy to see that this state vector is the simultaneous e|genstate of the relative-position
operatorx ® 1a -i® Xa and the momentum-sum operaiR 1a+ 1® Pa With respective
eigenvalues andk, wherel andi, are identity operators defined on the Hilbert spaties
andH,. Furthermore the sdty (r, k)) | r, k € R} becomes complete orthonormal system in

the Hilbert spacé{ ® H,,

W, DY K)) =80 —r)stk —k) (10)
/ dr/ dk [¥ (r, ) (¥ (r, )] = 1 ® . (11)

We remark that the projection operatgr(r, k)) (v (r, k)| in the tensor product Hilbert space
H ® Ha is nothing but the Naimark extension of the positive operator-valued measure
(27)"1D(r, k)6 D' (r, k) in the original Hilbert spacé{, and the statistical operatét, in
the Hilbert spacé, is the Naimark state [26].

We now consider number and phase variables. Since the phase and number variables,
¢ andn, correspond respectively to the position and momentum variaplasd p, a state
vector |y (¢, n)) corresponding to the state vectar(r, k)) is given by

[V (¢, n)) =

1 b
A 2 -1
where|¢) is the eigenstate of the Susskind—Glogower phase opeﬁaierzz‘;o [n){n+1]
[27, 28] which is isometric but not unitary,

|6) = an ye o, (13)

Because of the non-unitarity of the Susskind-Glogower phase opefatowve have
E|p) = e?|¢) but not ET|p) = €9|¢). In this letter, we restrict the range of the phase
variable ¢ to be —7r < ¢ < m. The set of the Susskind—Glogower phase eigenstates
{l¢)] — 7 < ¢ < m} becomes an overcomplete system in the Hilbert sgdcevhich
satisfies

dp ¢ + @) ® |pa)€" (12)

(Plo) = 9 (p — ¢) do [9)(¢] = 1 (14)
where the function? (¢) is defined by
1 o)
() = s 8(¢)——cot<2) (15)

It is found from equations (12)—(15) that the set of the state ve¢tofg, n)) becomes an
overcomplete system in the tensor product Hilbert spdce H,,

(1//((’5’ I’l)hﬁ((ﬁ/, I’l/)> = Sn,n’l?n (d) - ¢/) (16)
> [ wwemwe.mn =il (17)
n=0Y 7
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where the function?, (¢) is given by
1— ei(n+l)¢)
27(1—6€%)
It is easy to see that the state vectgn¢, n)) is the eigenstate of the number-sum operator
ata ® 1o+ 1 ® alaa with eigenvaluen. If the Susskind—Glogower phase operatbwas
unitary, the state vectdy (¢, n)) would have been the eigenstate of the phase-difference
operatorE ® Ef ~ e 1@®1-1842) with eigenvalue &9.

We now introduce a normalizable and non-negative funcliv@, n) of number and
phase by

W(p,n) = (Y (p,n)|p Q Gal¥ (. n))
1 /7 ™ . , R .
= E/\ d(p d(p/ e]n(w—¢’)(§0/ + ¢|p|¢ + ¢><¢a|aa|€0a> (19)

wherep is a quantum state of the system in the Hilbert spicand 4, is a non-negative
operator with Tg6, = 1 in the auxiliary Hilbert spacét,. The completeness relation of
the state vectory (¢, n)) yields the normalization condition

Z dgb W(g,n) = 1. (20)

Note that this function is defined in terms of the state vectors in the tensor product Hilbert
spaceH ® Ha. Hence we rewrite the functiomV(¢, n) so that it can be defined in the
original Hilbert spacé+. To this end, we define a statistical operaioin the Hilbert space

‘H by

m)[(nal6alma)] (n T (21)

W

where the anti-unitary operatdr takes the complex conjugate of a state vector on which it
acts, that is,

A':Mg

Zan|n — T|I/f Zanm (22)
Then since we have the relatidn|6 |¢’) = (p,]6alea), the functionW(¢, n) becomes
1 T T  into—o’ , . .
W(. n) = E/ d<p/ do' €' (o' + p|pl¢ + @) (95 1¢"). (23)

Furthermore using the relation$ + ¢) = e7%%|¢) and e¢|p) = E"|¢), wheren = a'a
is the number operator, we obtain the following expression for the fundtiga, »),

1 " " ipn A ~—ign ptna fny o/
W =5 [ do [ do' (9167 be Pig)lE"5 Elg)
1
= 5= TAD(@, MG D (¢, n)] (24)

where the operatob (¢, n) is defined by

b(d)’ n) = —i(jJﬁEA-Tne%inq& — EAvane—i¢iie—%in¢ (25)
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which is the displacement operator of number and phase. Because of the non-unitarity of
the Susskind—-Glogower phase operdioithe operatoD (¢, n) is isometric but not unitary
and satisfies the relations

D(¢,m)D(¢',n') = D(¢ + ¢/, n + n')es' "' ~7®) (26)

DY (¢, n)D(p,n) =1 (27)
n—1

D@, m)D (¢, n) =1 k) (k| (28)
k=0

where we have used the relatioA€! = 1 andETE = 1—|0)(0|. It was shown that the set
of the number-phase displacement operaisrs; {ﬁ(q&, nN-r<¢<nm,n=012..1}
becomes the Weyl semigroup for number and phase [29]. If there was a Hermitian phase
operatoré canonically conjugate to the number operatorwe would have obtained the
expressionD(¢, n) = expli(ng — ¢n)] for the number-phase displacement operator and
the setS would have been the Weyl group for number and phase. Note that the function
W(¢, n) has the same form of the operational phase-space probability distribdtiesk)
and the only difference between them is the displacement operator; the position-momentum
displacement operatoﬁ(r, k) is used forW(r, k) and the number-phase displacement
0peratorﬁ(¢,n) for W(¢,n). Therefore we can show that the functidhi(¢, n) has
the meaning of the operational number-phase probability distribution. For this reason, we
refer to the functionV(¢, n) as the operational number-phase probability distribution.

We now consider the properties of the operational number-phase probability distribution
W(¢, n) given by equation (24). The marginal distributions becomes

W)= | dpWi(g,n) =) un—m)iml|pm) (29)
- m=0

Wip) =Y W@,n) = f de v(¢ — ¢){plhle) (30)
n=0 -

where the functiong.(n) = (n|d|n) andv(¢) = (¢|5|¢) are considered the filter functions

of the measurement apparatus in the number and phase measurement. The filter functions
determine the measurement accuracy. For example, when the measurement apparatus is in
the vacuum state which correspondsite= |0) (0|, the filter functions becomes(n) = 8o,

andv(¢) = (27)~1. Then we obtain the marginal probability distributiongn) = (n|p|n)
andW(¢) = (2r)~L. This result indicates that we cannot measure the phase of the physical
system by means of the measurement apparatus in the quantum state with completely
uncertain phase. Using the marginal distributid¥ié:) andW(¢), we obtain the operational
characteristic functions for number and phase,

Fulx) =Y €™ W(n) = F,(x; p)F(x; ) (31)
n=0
Fpx) = | dp e W(p) = Fy(x; p)Fy(x; 6) (32)

-7
whereF, (x; 5) and Fy(x; ) are the intrinsic number and phase characteristic functions of
the quantum statg,

Fo(x; ) =Trle™™ 4]l Fy(x; p) = TIE)A]. (33)
Here we setE(x) = ffﬂ do |p)e " (¢|. Note that ifx is a non-negative (or negative)
integer, the equalityt (x) = E* (or E(x) = ETI!) holds. The operational characteristic
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functions yield the operational moments of number and phase,

m

o m! . o
(A™Yop = ;mm’w s (34)
Am m m! R Am_
(@ op = gmww e (35)
where we setii*), = Tr[a*5] and (¢*); = [7_dg ¢*(¢1p1#). In particular, we obtain
(AR" >op = (A — (Aop)Dop = (AR%); + (ARD)5 (36)
(AG")op = (( — (Pop)Z)op = (A?) 5 + (AP?)s (37)

which clearly shows the enhancement of the number and phase fluctuations that is caused
by the measurement apparatus.

We next consider the relation between the operational number-phase probability
distribution W(¢, n) and the Wigner function for number and phase. The number-phase
Wigner function can be constructed within the framework of the Pegg—Barnett phase operator
formalism [30, 31]. The Pegg-Barnett phase operataand its eigenstatis,,) are defined
in a (s + 1)-dimensional Hilbert space 1,

bs = Y |6m) b (] (38)
m=0
) = —— ie’i”"””ln) (39)
V1+s =5

with ¢, = -7 +2mm/(s +1) = —7 + Am. The exponentialﬁs = exp(—i¢3s) of the
Pegg—-Barnett phase operator is a unitary operator,

E, —Z|¢ e (g

§—
=) I (n+ 1+ H75) (0. (40)
The set of the Pegg—Barnett phase eigenstéites) |m = 0,1, ...,s} spans a complete
orthonormal system in the Hilbert spaéé 1. Taking the limits — oo after all the
calculations are complete yields the physical quantities such average value and fluctuation.
The number-phase Wigner functioW,(¢,,,n; p) in the Pegg—Barnett phase operator
formalism [32] is a discrete Wigner function [33],

=

I
o

1 &
W@ 13 6) = 7 3 @ dnilblgms) (42)
k=0

which is a quasiprobability distribution since it can take negative values. The discrete
number-phase Wigner functioW, (¢,,, n; p) is normalized as

Y Z Welgm. n: ) = 1. (42)

m=0 n=

It is easily seen from the definition that the following relations are satisfied

> Wil 15 5) = (Gl dlgm) = (®156) (43)
n=0
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D Wo(@n, 5 p) = (nlpln). (44)
m=0
The properties of the number-phase Wigner function in the Pegg—Barnett phase operator
formalism have been investigated in detail [32].
To find the relation between the operational number-phase probability distribution
W(¢,n) and the discrete number-phase Wigner functi®pn(¢,,, n; p), let us calculate
the convolution of the two discrete number-phase Wigner functidhi&p,,, n; o) and
W (@, n; 6);

DD W@k n + 15 YW@y 15 6)

k=0 1=0

1 N s X . .
= 105 2 2 Bt Plbm i) Disa G 1e)
5 = 1=
1 s N n A R .
= T D D Gmeit ELDET [fmsices) a6 1) (45)
+5 ==
where we have used the eigenvalue equations of the Pegg—Barnett phase operator,
Elpn) =€"1dn)  Ellgn) = €7 hn). (46)
Since the Pegg—Barnett phase eigenstate satisfies the relation
|Buik) = € 16) (47)

we can further calculate equation (45) as follows

DD Welusion + 1 YWy (i 13 6)

k=0 1=0

1 s s A A A A A A
= 1o D Dbl B ) (gl )

k=0 [=0
1 s N . A A » 5 )
= T 2 D O BB e T ) (gl )
k=0 [=0
1 . .
= 15 T6[ADs (@ +m)E Dl + . )] (48)

where Tt means the trace operation over the Hilbert sggd¢e, and the operatof)s (P, n)
induces the number-phase displacement in the Hilbert space

és (¢m, n) — _i¢/nﬁEA‘Ine%in¢m — EA'Ine_id)mﬁe_%i”@n (49)

which corresponds to the number-phase displacement opddatom) in the limits — oo.
Therefore we have found the following relation between the operational number-phase
probability distribution\V(¢, n) and the discrete number-phase Wigner function,

T B S R R
W(p +m,n) = lerT;o > Z Z Wy (@mii, n +1; )W (P, l; 0) (50)
k=0 1=0
which indicates that the operational number-phase probability distributia@, n) is
equivalent to the convolution of the two discrete number-phase Wigner functions in the
Pegg—Barnett phase operator formalism. Note that the fungtigp-, n) but notW(¢, n)
appears on the left-hand side of equation (50) since we take the convolution of the Wigner
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functionsW, (¢, 1k, n+1; p) andWs(éx, [; &) but notWi (¢, + ¢k, n+1; p) andWy(éx, 15 6).
The difference betweet,,., and¢,, + ¢ is justr radian in our definition of the phase
range.

We next introduce a normalizable functid# (¢, n; p) of number and phase for the
quantum stated [34],

1 o
W(g,n; p) = E{(”Iﬁl”) + Z[e'm‘ﬁ(m +nlpln) + (C~C-)]} (51)
m=1

where (c.c.) means taking the complex conjugate of the first term in the square bracket.
This function takes negative values and the normalization condition is given by

Zf dp W(g.n: p) = 1. (52)
_o —JT
It is easy to see that the functidi (¢, n) satisfies the following relations:
dp W(¢, n; p) = (nlp|n) (53)
Z W, n; p) = (lple) (54)
/ 0 W, WG, 6) = 5= THl}6] (55)

n=0

Therefore we find that the functioW (¢, n; p) has the same properties as those of the
Wigner function for number and phase. Hence, we refer to this function as the number-phase
Wigner function. To obtain the relation between the operational number-phase probability
distribution W(¢, n) and the number-phase Wigner functiti(¢, n; o), we calculate the
convolution of the two number-phase Wigner functisiio, n; p) and W(¢, n; 6),

Zf dy W(@ + v, n+m; )W (¥, m; )

1 & o A
=5-2 {<m + n|plm + n)(m|&|m)
ﬂm:O

+ Y [€%(m + n + k| plm + n)(m|&|m + k) + (c.c.)]}
k=1

|+

= Z{<m|fﬁ(¢,n>ﬁ15<¢,n)|m><m|&|m>

JT

N

m=0

+ > [(m + kD (. m)pD(@. n)m) (m]&|m + k) + (cc)]}
k=1

= — > (m|D'(¢,n)pD(@, n)lk) (k|6 |m)

T =0

m=!

|~

N
o

1 ~ R
= o Tr[D'(¢, n)pD(¢, n)é]. (56)
JT

Therefore the operational number-phase probability distributié, n) is represented by
the convolution of the number-phase Wigner functions of the quantum tated the
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reference staté,

Wig,n) = / dp W (g + 9.1 +m: )W (g, m: &). (57)
m=0
It is found from equations (50) and (57) that the operational number-phase probability
distributionW (¢, n) is the smoothed number-phase Wigner function. The smoothing effect
is due to the finite accuracy of the apparatus in the number and phase measurement.
There are two other number-phase Wigner functions that satisfy the relations given by
equations (52)—(55) [35-37]. One, denotedSés, n; p) [35, 36], is given by

S@.n:p) = 5 {<n|p|n +Z[e'<2'" P40 +m — 1ipln —m) + (c.c)]

m=1

+ ) [ (0 +mlpln —m) + (c.c.)]} (58)
m=1

and the other number-phase Wigner functi®@, n; p) [37] is related to the number-
phase Wigner functios (¢, n; p) by S(¢, n; p) = S(¢, n: p) + S, n — ,o) Although

the number-phase Wigner functioisg¢, n; p) and W (¢, n; p) are qune different, they
exhibit similar properties. By straightforward calculation, we can show that the operational
number-phase probability distribution (¢, n) is represented by the convolution of the two
number-phase Wigner functios&¢, n; o) and S(¢, n; 6),

W@ = [ dpS@ + gt mi pyS(e.ms o) (59)
m=0Y —7

All the results obtained for the functiomV(¢,n) of number and phase given by
equation (24) indicate that this function is the operational number-phase probability
distribution of the physical system. Therefore we have obtained the operational number-
phase probability dlstrlbutlom/v(qb n) and investigated the properties. Since the operator
X(qb n) = (2m)~ 1D(q> n)aDT(¢ n) is a posmve operator-valued measure that satisfies
X(¢,n) > 0 and Zn Of d¢ X(¢,n) = 1, we can consider operational number and
phase observables in the same way as that for the operational position and momentum
observables [18, 20].
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