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Japan

Received 18 June 1998

Abstract. An operational probability distribution for number and phase is introduced and the
properties are investigated. This operational probability distribution is obtained by replacing
the displacement operator of position and momentum in operational phase-space probability
distribution with the displacement operator of number and phase. It is shown that the operational
number-phase probability distribution is represented by the convolution of two Wigner functions
for number and phase.

The phase-space distribution functions for a quantum state of a physical system are useful
tools for investigating the dynamical and statistical properties of a quantum mechanical
system [1–6]. These include the Glauber–SudarshanP -function [7–9], the Wigner function
[10, 11] and the HusimiQ-function [12, 13] which are closely related to the operator
ordering in the mathematical description of a physical system. Except for the Husimi
Q-function, the phase-space distribution functions can take negative values due to the
non-commutativity or the uncertainty relation of position and momentum. Thus these
functions cannot be considered as the probability distributions in the phase space and they
are called the quasiprobability distributions. The quasiprobability distributions of position
and momentum in the phase space characterize the intrinsic properties of a quantum state
of a physical system.

By taking account of the external effects caused by measurement apparatus or by some
environmental system, the probability distribution of position and momentum can be defined
for a quantum mechanical system [14–19], which is called the operational phase-space
probability distribution. The operational phase-space probability distribution, denoted as
W(r, k), is given by

W(r, k) = 1

2π
Tr[ρ̂D̂(r, k)σ̂ D̂†(r, k)] (1)

which is non-negative and normalized as∫ ∞
−∞

dr
∫ ∞
−∞

dkW(r, k) = 1. (2)

In equation (1),ρ̂ is a statistical operator of the quantum state of the system andσ̂ is also
some statistical operator which is referred to as the quantum ruler [16, 17] or the reference
state [18, 19]. The Hilbert space on which these operators are defined is denoted asH. The
operatorD̂(r, k) induces the displacement in the phase space,

D̂(r, k) = exp[i(kx̂ − rp̂)]
= exp[µâ† − µ∗â] (3)
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where x̂ and p̂ are position and momentum operators andâ and â† are annihilation and
creation operators and the complex parameterµ is given byµ = (r+ ik)/

√
2. In this letter,

operators are denoted as a symbol with a hat. When the reference state is the vacuum state,
we obtain the HusimiQ-function.

It is shown that the operational phase-space probability distribution is expressed as the
convolution of thes-ordered quasiprobability distribution and (−s)-ordered quasiprobability
distribution [18]. In particular, we have

W(r, k) =
∫ ∞
−∞

dq
∫ ∞
−∞

dp P (q + r, p + k; ρ̂)Q(q, p; σ̂ )

=
∫ ∞
−∞

dq
∫ ∞
−∞

dpQ(q + r, p + k; ρ̂)P (q, p; σ̂ )

=
∫ ∞
−∞

dq
∫ ∞
−∞

dpW(q + r, p + k; ρ̂)W(q, p; σ̂ ) (4)

where P(q, p; ρ̂), Q(q, p; ρ̂) and W(q, p; ρ̂) are the Glauber–SudarshanP -function,
the Husimi Q-function and the Wigner function of the quantum stateρ̂. Therefore
the operational phase-space probability distribution is the smoothed quasiprobability
distribution. The smoothing effect is due to the finite accuracy or the sampling of the
measurement apparatus [16, 17]. The operational phase-space probability distribution
describes the properties of the physical system and the measurement apparatus while the
quasiprobability distribution does the properties of only the physical system. The marginal
probability distributions are obtained

W(r) =
∫ ∞
−∞

dkW(r, k) =
∫ ∞
−∞

dq f (q − r)〈q|ρ̂|q〉 (5)

W(k) =
∫ ∞
−∞

drW(r, k) =
∫ ∞
−∞

dp g(k − p)〈p|ρ̂|p〉 (6)

where |q〉 and |p〉 are the position and momentum eigenstates andf (q) = 〈q|σ̂ |q〉 and
g(p) = 〈p|σ̂ |p〉 represents are the filter functions of the measurement apparatus. The
properties of the operational phase-space probability distribution have been investigated in
detail [14–19]. It is shown that the operational phase-space probability distribution can
describe the realistic optical measurement [20, 21] and the simultaneous measurement of
position and momentum [22, 23]. Furthermore we remark that the operational phase-space
probability distributions are closely related to the stochastic or fuzzy-space formulation of
quantum mechanics [24, 25].

The operational phase-space probability distribution is a function of position and
momentum which are canonically conjugate to each other, and the properties have been
investigated in detail. Number and phase are also an important canonical pair in quantum
optical systems. Therefore the purpose of this letter is to introduce the operational
probability distribution for number and phase and to investigate the properties. To obtain the
operational number-phase probability distribution, let us rewrite the operational phase-space
probability distribution in another form [18]. We first introduce an auxiliary Hilbert space
Ha and we define a statistical operatorσ̂a in this Hilbert space by

σ̂a =
∞∑
m=0

∞∑
n=0

|ma〉[〈n|σ̂ |m〉]〈na| (7)

where |n〉 and |na〉 are the Fock states in the Hilbert spacesH andHa. We denote all of
the quantities in the auxiliary Hilbert spaceHa by adding the subscript ‘a’. The statistical
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operatorσ̂a satisfies the relations〈ma|σ̂a|na〉 = 〈n|σ̂ |m〉 and〈xa|σ̂a|ya〉 = 〈y|σ̂ |x〉. Using the
statistical operator̂σa, we can express the operational phase-space probability distribution
W(r, k) given by equation (1) in the following form [18]:

W(r, k) = 〈ψ(r, k)|ρ̂ ⊗ σ̂a|ψ(r, k)〉 (8)

where|ψ(r, k)〉 is a state vector in the tensor product Hilbert spaceH⊗Ha,

|ψ(r, k)〉 = 1√
2π

∫ ∞
−∞

dq |r + q〉 ⊗ |qa〉eikq . (9)

It is easy to see that this state vector is the simultaneous eigenstate of the relative-position
operatorx̂ ⊗ 1̂a− 1̂⊗ x̂a and the momentum-sum operatorp̂⊗ 1̂a+ 1̂⊗ p̂a with respective
eigenvaluesr andk, where1̂ and1̂a are identity operators defined on the Hilbert spacesH
andHa. Furthermore the set{|ψ(r, k)〉 | r, k ∈ R} becomes complete orthonormal system in
the Hilbert spaceH⊗Ha,

〈ψ(r, k)|ψ(r ′, k′)〉 = δ(r − r ′)δ(k − k′) (10)∫ ∞
−∞

dr
∫ ∞
−∞

dk |ψ(r, k)〉〈ψ(r, k)| = 1̂⊗ 1̂a. (11)

We remark that the projection operator|ψ(r, k)〉〈ψ(r, k)| in the tensor product Hilbert space
H ⊗ Ha is nothing but the Naimark extension of the positive operator-valued measure
(2π)−1D̂(r, k)σ̂ D̂†(r, k) in the original Hilbert spaceH, and the statistical operator̂σa in
the Hilbert spaceHa is the Naimark state [26].

We now consider number and phase variables. Since the phase and number variables,
φ andn, correspond respectively to the position and momentum variables,q andp, a state
vector |ψ(φ, n)〉 corresponding to the state vector|ψ(r, k)〉 is given by

|ψ(φ, n)〉 = 1√
2π

∫ π

−π
dϕ |φ + ϕ〉 ⊗ |ϕa〉einϕ (12)

where|φ〉 is the eigenstate of the Susskind–Glogower phase operatorÊ =∑∞n=0 |n〉〈n+ 1|
[27, 28] which is isometric but not unitary,

|φ〉 = 1√
2π

∞∑
n=0

|n〉e−iφn. (13)

Because of the non-unitarity of the Susskind–Glogower phase operatorÊ, we have
Ê|φ〉 = e−iφ|φ〉 but not Ê†|φ〉 = eiφ|φ〉. In this letter, we restrict the range of the phase
variable φ to be −π 6 φ < π . The set of the Susskind–Glogower phase eigenstates
{|φ〉| − π 6 φ < π} becomes an overcomplete system in the Hilbert spaceH, which
satisfies

〈φ|ϕ〉 = ϑ(φ − ϕ)
∫ π

−π
dφ |φ〉〈φ| = 1̂ (14)

where the functionϑ(φ) is defined by

ϑ(φ) = 1

4π
+ 1

2
δ(φ)− i

4π
cot

(
φ

2

)
. (15)

It is found from equations (12)–(15) that the set of the state vectors|ψ(φ, n)〉 becomes an
overcomplete system in the tensor product Hilbert spaceH⊗Ha,

〈ψ(φ, n)|ψ(φ′, n′)〉 = δn,n′ϑn(φ − φ′) (16)
∞∑
n=0

∫ π

−π
dφ |ψ(φ, n)〉〈ψ(φ, n)| = 1̂⊗ 1̂a (17)
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where the functionϑn(φ) is given by

ϑn(φ) = 1− ei(n+1)φ

2π(1− eiφ)
. (18)

It is easy to see that the state vector|ψ(φ, n)〉 is the eigenstate of the number-sum operator
â†â ⊗ 1̂a+ 1̂⊗ â†aâa with eigenvaluen. If the Susskind–Glogower phase operatorÊ was
unitary, the state vector|ψ(φ, n)〉 would have been the eigenstate of the phase-difference
operatorÊ ⊗ Ê†a ∼ e−i(φ̂⊗1̂a−1̂⊗φ̂a) with eigenvalue e−iφ .

We now introduce a normalizable and non-negative functionW(φ, n) of number and
phase by

W(φ, n) = 〈ψ(φ, n)|ρ̂ ⊗ σ̂a|ψ(φ, n)〉
= 1

2π

∫ π

−π
dϕ
∫ π

−π
dϕ′ ein(ϕ−ϕ′)〈ϕ′ + φ|ρ̂|φ + ϕ〉〈ϕ′a|σ̂a|ϕa〉 (19)

whereρ̂ is a quantum state of the system in the Hilbert spaceH and σ̂a is a non-negative
operator with Tra σ̂a = 1 in the auxiliary Hilbert spaceHa. The completeness relation of
the state vector|ψ(φ, n)〉 yields the normalization condition

∞∑
n=0

∫ π

−π
dφW(φ, n) = 1. (20)

Note that this function is defined in terms of the state vectors in the tensor product Hilbert
spaceH ⊗ Ha. Hence we rewrite the functionW(φ, n) so that it can be defined in the
original Hilbert spaceH. To this end, we define a statistical operatorσ̂ in the Hilbert space
H by

σ̂ =
∞∑
m=0

∞∑
n=0

T̂ †|m〉[〈na|σ̂a|ma〉]〈n|T̂ (21)

where the anti-unitary operator̂T takes the complex conjugate of a state vector on which it
acts, that is,

|ψ〉 =
∞∑
n=0

an|n〉 −→ T̂ |ψ〉 = |ψ∗〉 ≡
∞∑
n=0

a∗n|n〉. (22)

Then since we have the relation〈ϕ|σ̂ |ϕ′〉 = 〈ϕ′a|σ̂a|ϕa〉, the functionW(φ, n) becomes

W(φ, n) = 1

2π

∫ π

−π
dϕ
∫ π

−π
dϕ′ ein(ϕ−ϕ′)〈ϕ′ + φ|ρ̂|φ + ϕ〉〈ϕ|σ̂ |ϕ′〉. (23)

Furthermore using the relations|φ + ϕ〉 = e−iφn̂|ϕ〉 and e−inϕ|ϕ〉 = Ên|ϕ〉, wheren̂ = â†â
is the number operator, we obtain the following expression for the functionW(φ, n),

W(φ, n) = 1

2π

∫ π

−π
dϕ

∫ π

−π
dϕ′ 〈ϕ′|eiφn̂ρ̂e−iφn̂|ϕ〉〈ϕ|Ê† nσ̂ Ên|ϕ′〉

= 1

2π
Tr[ρ̂D̂(φ, n)σ̂ D̂†(φ, n)] (24)

where the operator̂D(φ, n) is defined by

D̂(φ, n) = e−iφn̂Ê† ne
1
2 inφ = Ê† ne−iφn̂e−

1
2 inφ (25)
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which is the displacement operator of number and phase. Because of the non-unitarity of
the Susskind–Glogower phase operatorÊ, the operatorD̂(φ, n) is isometric but not unitary
and satisfies the relations

D̂(φ, n)D̂(φ′, n′) = D̂(φ + φ′, n+ n′)e1
2 i(nφ′−n′φ) (26)

D̂†(φ, n)D̂(φ, n) = 1̂ (27)

D̂(φ, n)D̂†(φ, n) = 1̂−
n−1∑
k=0

|k〉〈k| (28)

where we have used the relationsÊÊ† = 1̂ andÊ†Ê = 1̂−|0〉〈0|. It was shown that the set
of the number-phase displacement operators,S = {D̂(φ, n)|−π 6 φ < π, n = 0, 1, 2, . . .},
becomes the Weyl semigroup for number and phase [29]. If there was a Hermitian phase
operatorφ̂ canonically conjugate to the number operatorn̂, we would have obtained the
expressionD̂(φ, n) = exp[i(nφ̂ − φn̂)] for the number-phase displacement operator and
the setS would have been the Weyl group for number and phase. Note that the function
W(φ, n) has the same form of the operational phase-space probability distributionW(r, k)
and the only difference between them is the displacement operator; the position-momentum
displacement operator̂D(r, k) is used forW(r, k) and the number-phase displacement
operatorD̂(φ, n) for W(φ, n). Therefore we can show that the functionW(φ, n) has
the meaning of the operational number-phase probability distribution. For this reason, we
refer to the functionW(φ, n) as the operational number-phase probability distribution.

We now consider the properties of the operational number-phase probability distribution
W(φ, n) given by equation (24). The marginal distributions becomes

W(n) =
∫ π

−π
dφW(φ, n) =

n∑
m=0

µ(n−m)〈m|ρ̂|m〉 (29)

W(φ) =
∞∑
n=0

W(φ, n) =
∫ π

−π
dϕ ν(φ − ϕ)〈ϕ|ρ̂|ϕ〉 (30)

where the functionsµ(n) = 〈n|σ̂ |n〉 andν(φ) = 〈φ|σ̂ |φ〉 are considered the filter functions
of the measurement apparatus in the number and phase measurement. The filter functions
determine the measurement accuracy. For example, when the measurement apparatus is in
the vacuum state which corresponds toσ̂ = |0〉〈0|, the filter functions becomesµ(n) = δ0,n

andν(φ) = (2π)−1. Then we obtain the marginal probability distributionsW(n) = 〈n|ρ̂|n〉
andW(φ) = (2π)−1. This result indicates that we cannot measure the phase of the physical
system by means of the measurement apparatus in the quantum state with completely
uncertain phase. Using the marginal distributionsW(n) andW(φ), we obtain the operational
characteristic functions for number and phase,

Fn(x) =
∞∑
n=0

e−inxW(n) = Fn(x; ρ̂)Fn(x; σ̂ ) (31)

Fφ(x) =
∫ π

−π
dφ e−iφxW(φ) = Fφ(x; ρ̂)Fφ(x; σ̂ ) (32)

whereFn(x; ρ̂) andFφ(x; ρ̂) are the intrinsic number and phase characteristic functions of
the quantum statêρ,

Fn(x; ρ̂) = Tr[e−in̂x ρ̂] Fφ(x; ρ̂) = Tr[Ê(x)ρ̂]. (33)

Here we setÊ(x) = ∫ π
−π dφ |φ〉e−iφx〈φ|. Note that if x is a non-negative (or negative)

integer, the equalityÊ(x) = Êx (or Ê(x) = Ê† |x|) holds. The operational characteristic
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functions yield the operational moments of number and phase,

〈n̂m〉op =
m∑
k=0

m!

k!(m− k)! 〈n̂
k〉ρ̂〈n̂m−k〉σ̂ (34)

〈φ̂m〉op =
m∑
k=0

m!

k!(m− k)! 〈φ̂
k〉ρ̂〈φ̂m−k〉σ̂ (35)

where we set〈n̂k〉ρ̂ = Tr[n̂kρ̂] and 〈φ̂k〉ρ̂ =
∫ π
−π dφ φk〈φ|ρ̂|φ〉. In particular, we obtain

〈1n̂n〉op = 〈(n̂− 〈n̂〉op)
2〉op = 〈1n̂2〉ρ̂ + 〈1n̂2〉σ̂ (36)

〈1φ̂n〉op = 〈(φ̂ − 〈φ̂〉op)
2〉op = 〈1φ̂2〉ρ̂ + 〈1φ̂2〉σ̂ (37)

which clearly shows the enhancement of the number and phase fluctuations that is caused
by the measurement apparatus.

We next consider the relation between the operational number-phase probability
distributionW(φ, n) and the Wigner function for number and phase. The number-phase
Wigner function can be constructed within the framework of the Pegg–Barnett phase operator
formalism [30, 31]. The Pegg–Barnett phase operatorφ̂s and its eigenstate|φm〉 are defined
in a (s + 1)-dimensional Hilbert spaceHs+1,

φ̂s =
s∑

m=0

|φm〉φm〈φm| (38)

|φm〉 = 1√
1+ s

s∑
n=0

e−inφm |n〉 (39)

with φm = −π + 2πm/(s + 1) ≡ −π + 1m. The exponentialÊs = exp(−iφ̂s) of the
Pegg–Barnett phase operator is a unitary operator,

Ês =
s∑

m=0

|φm〉e−iφm〈φm|

=
s−1∑
n=0

|n〉〈n+ 1| + ei(1+s)π |s〉〈0|. (40)

The set of the Pegg–Barnett phase eigenstates{|φm〉 |m = 0, 1, . . . , s} spans a complete
orthonormal system in the Hilbert spaceHs+1. Taking the limit s → ∞ after all the
calculations are complete yields the physical quantities such average value and fluctuation.
The number-phase Wigner functionWs(φm, n; ρ̂) in the Pegg–Barnett phase operator
formalism [32] is a discrete Wigner function [33],

Ws(φm, n; ρ̂) = 1

1+ s
s∑
k=0

e2i1kn〈φm−k|ρ̂|φm+k〉 (41)

which is a quasiprobability distribution since it can take negative values. The discrete
number-phase Wigner functionWs(φm, n; ρ̂) is normalized as

s∑
m=0

s∑
n=0

Ws(φm, n; ρ̂) = 1. (42)

It is easily seen from the definition that the following relations are satisfied
s∑
n=0

Ws(φm, n; ρ̂) = 〈φm|ρ̂|φm〉 s→∞−→ 〈φ|ρ̂|φ〉 (43)
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s∑
m=0

Ws(φm, n; ρ̂) = 〈n|ρ̂|n〉. (44)

The properties of the number-phase Wigner function in the Pegg–Barnett phase operator
formalism have been investigated in detail [32].

To find the relation between the operational number-phase probability distribution
W(φ, n) and the discrete number-phase Wigner functionWs(φm, n; ρ̂), let us calculate
the convolution of the two discrete number-phase Wigner functionsWs(φm, n; ρ̂) and
Ws(φm, n; σ̂ );
s∑
k=0

s∑
l=0

Ws(φm+k, n+ l; ρ̂)Ws(φk, l; σ̂ )

= 1

1+ s
s∑
k=0

s∑
l=0

e2i1ln〈φm+k−l|ρ̂|φm+k+l〉〈φk+l|σ̂ |φk−l〉

= 1

1+ s
s∑
k=0

s∑
l=0

〈φm+k−l|Êns ρ̂Ê† ns |φm+k+l〉〈φk+l|σ̂ |φk−l〉 (45)

where we have used the eigenvalue equations of the Pegg–Barnett phase operator,

Ês |φm〉 = e−iφm |φm〉 Ê†s |φm〉 = eiφm |φm〉. (46)

Since the Pegg–Barnett phase eigenstate satisfies the relation

|φm+k〉 = e−i1kn̂|φm〉 (47)

we can further calculate equation (45) as follows
s∑
k=0

s∑
l=0

Ws(φm+k, n+ l; ρ̂)Ws(φk, l; σ̂ )

= 1

1+ s
s∑
k=0

s∑
l=0

〈φk−l|ei1mn̂Êns ρ̂Ê
† n
s e−i1mn̂|φk+l〉〈φk+l|σ̂ |φk−l〉

= 1

1+ s
s∑
k=0

s∑
l=0

〈φk−l|ei(φm+π)n̂Êns ρ̂Ê
† n
s e−i(φm+π)n̂|φk+l〉〈φk+l|σ̂ |φk−l〉

= 1

1+ s Trs [ρ̂D̂s(φm + π)σ̂ D̂†s (φm + π, n)] (48)

where Trs means the trace operation over the Hilbert spaceHs+1 and the operator̂Ds(φm, n)

induces the number-phase displacement in the Hilbert spaceHs+1,

D̂s(φm, n) = e−iφmn̂Ê† ns e
1
2 inφm = Ê† ns e−iφmn̂e−

1
2 inφm (49)

which corresponds to the number-phase displacement operatorD̂(φ, n) in the limit s →∞.
Therefore we have found the following relation between the operational number-phase
probability distributionW(φ, n) and the discrete number-phase Wigner function,

W(φ + π, n) = lim
s→∞

1+ s
2π

s∑
k=0

s∑
l=0

Ws(φm+k, n+ l; ρ̂)Ws(φk, l; σ̂ ) (50)

which indicates that the operational number-phase probability distributionW(φ, n) is
equivalent to the convolution of the two discrete number-phase Wigner functions in the
Pegg–Barnett phase operator formalism. Note that the functionW(φ+π, n) but notW(φ, n)
appears on the left-hand side of equation (50) since we take the convolution of the Wigner
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functionsWs(φm+k, n+l; ρ̂) andWs(φk, l; σ̂ ) but notWs(φm+φk, n+l; ρ̂) andWs(φk, l; σ̂ ).
The difference betweenφm+k andφm + φk is just π radian in our definition of the phase
range.

We next introduce a normalizable functionW(φ, n; ρ̂) of number and phase for the
quantum statêρ [34],

W(φ, n; ρ̂) = 1

2π

{
〈n|ρ̂|n〉 +

∞∑
m=1

[eimφ〈m+ n|ρ̂|n〉 + (c.c.)]
}

(51)

where (c.c.) means taking the complex conjugate of the first term in the square bracket.
This function takes negative values and the normalization condition is given by

∞∑
n=0

∫ π

−π
dφ W(φ, n; ρ̂) = 1. (52)

It is easy to see that the functionW(φ, n) satisfies the following relations:∫ π

−π
dφ W(φ, n; ρ̂) = 〈n|ρ̂|n〉 (53)

∞∑
n=0

W(φ, n; ρ̂) = 〈φ|ρ̂|φ〉 (54)

∞∑
n=0

∫ π

−π
dφ W(φ, n; ρ̂)W(φ, n; σ̂ ) = 1

2π
Tr[ρ̂σ̂ ]. (55)

Therefore we find that the functionW(φ, n; ρ̂) has the same properties as those of the
Wigner function for number and phase. Hence, we refer to this function as the number-phase
Wigner function. To obtain the relation between the operational number-phase probability
distributionW(φ, n) and the number-phase Wigner functionW(φ, n; ρ̂), we calculate the
convolution of the two number-phase Wigner functionW(φ, n; ρ̂) andW(φ, n; σ̂ ),
∞∑
m=0

∫ π

−π
dψ W(φ + ψ, n+m; ρ̂)W(ψ,m; σ̂ )

= 1

2π

∞∑
m=0

{
〈m+ n|ρ̂|m+ n〉〈m|σ̂ |m〉

+
∞∑
k=1

[eikφ〈m+ n+ k|ρ̂|m+ n〉〈m|σ̂ |m+ k〉 + (c.c.)]
}

= 1

2π

∞∑
m=0

{
〈m|D̂†(φ, n)ρ̂D̂(φ, n)|m〉〈m|σ̂ |m〉

+
∞∑
k=1

[〈m+ k|D̂†(φ, n)ρ̂D̂(φ, n)|m〉〈m|σ̂ |m+ k〉 + (c.c.)]
}

= 1

2π

∞∑
m=0

∞∑
k=0

〈m|D̂†(φ, n)ρ̂D̂(φ, n)|k〉〈k|σ̂ |m〉

= 1

2π
Tr[D̂†(φ, n)ρ̂D̂(φ, n)σ̂ ]. (56)

Therefore the operational number-phase probability distributionW(φ, n) is represented by
the convolution of the number-phase Wigner functions of the quantum stateρ̂ and the



Letter to the Editor L601

reference statêσ ,

W(φ, n) =
∞∑
m=0

∫ π

−π
dϕ W(φ + ϕ, n+m; ρ̂)W(ϕ,m; σ̂ ). (57)

It is found from equations (50) and (57) that the operational number-phase probability
distributionW(φ, n) is the smoothed number-phase Wigner function. The smoothing effect
is due to the finite accuracy of the apparatus in the number and phase measurement.

There are two other number-phase Wigner functions that satisfy the relations given by
equations (52)–(55) [35–37]. One, denoted asS(φ, n; ρ̂) [35, 36], is given by

S(φ, n; ρ̂) = 1

2π

{
〈n|ρ̂|n〉 +

n∑
m=1

[ei(2m−1)φ〈n+m− 1|ρ̂|n−m〉 + (c.c.)]

+
n∑

m=1

[e2imφ〈n+m|ρ̂|n−m〉 + (c.c.)]
}

(58)

and the other number-phase Wigner functionS̃(φ, n; ρ̂) [37] is related to the number-
phase Wigner functionS(φ, n; ρ̂) by S(φ, n; ρ̂) = S̃(φ, n; ρ̂) + S̃(φ, n − 1

2; ρ̂). Although
the number-phase Wigner functionsS(φ, n; ρ̂) and W(φ, n; ρ̂) are quite different, they
exhibit similar properties. By straightforward calculation, we can show that the operational
number-phase probability distributionW(φ, n) is represented by the convolution of the two
number-phase Wigner functionsS(φ, n; ρ̂) andS(φ, n; σ̂ ),

W(φ, n) =
∞∑
m=0

∫ π

−π
dϕ S(φ + ϕ, n+m; ρ̂)S(ϕ,m; σ̂ ). (59)

All the results obtained for the functionW(φ, n) of number and phase given by
equation (24) indicate that this function is the operational number-phase probability
distribution of the physical system. Therefore we have obtained the operational number-
phase probability distributionW(φ, n) and investigated the properties. Since the operator
X̂ (φ, n) = (2π)−1D̂(φ, n)σ̂ D̂†(φ, n) is a positive operator-valued measure that satisfies
X̂ (φ, n) > 0 and

∑∞
n=0

∫ π
−π dφ X̂ (φ, n) = 1̂, we can consider operational number and

phase observables in the same way as that for the operational position and momentum
observables [18, 20].
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[16] Bužek V, Keital C H and Knight P L 1995Phys. Rev.A 51 2575



L602 Letter to the Editor
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